1. <nav id="iwowq"></nav>
      <li id="iwowq"><object id="iwowq"><cite id="iwowq"></cite></object></li>
          <em id="iwowq"></em>
        1. <th id="iwowq"></th>
          <nav id="iwowq"></nav>

            您好,三暢儀表官方網站歡迎您!

            單位換算|官方微信|加入收藏|聯系三暢

            智能電磁流量計

            新聞資訊

            聯系我們

            熱門文章

            電磁流量計在有限流動水域浮體結構對水流結構的影響

            來源:作者:發表時間:2019-03-30 10:45:22

            摘要:基于物理模型試驗,研究浮體結構在有限流動水域運行過程中對下游水流流動結構產生的影響。在不同浮體結構位置及來流條件下,對下游水流結構特征斷面的流速分布、流速不均勻系數以及回流區長度進行了測量分析。結果表明:浮體結構位置對流速分布及流速不均勻系數存在明顯影響;來流條件的改變同樣對兩者有較大的影響,其影響隨著來流流量的增大而增大;回流區的長度受浮體結構位置以及來流流量影響都較大。在實際工程中,應重點關注浮體結構位置及來流流量變化引起的水流流動結構改變。
            浮體結構閘門作為一種新型的環境友好型閘門在平原水利防洪工程中得到廣泛的應用[1-4]。受邊界以及流動特性的影響,有限流動水域中的浮體結構水動力變化更為復雜,易導致浮體結構傾覆,從而影響工程安全。水流結構的變化對浮體結構穩定性起到關鍵作用[5-6]。邢殿錄等[7-8]對比無限和有限水域,認為有限水域中邊界的存在影響浮體結構的水動力系數。陸彥[9]分析浮箱門在靜水和動水中的穩定性及其影響因素,對浮箱門在運行過程中的周圍水力特性進行描述,并給出了增加沉浮穩定性的措施。Johnson等[10]采用物理模型試驗對淹沒狀態下的防波堤在周圍波浪以及水流作用下的影響進行分析,通過3種不同的數值模型對比并描述了浮式防波堤對周圍水流流態分布及波高的影響。傅宗甫等[11-12]基于水力學模型試驗,分析了新型浮體閘在動水中沉浮的水力特性,得到不同位置下影響浮體閘穩定性的因素,同時提出提高浮體閘沉浮安全性的方式。蘇禮邦[13]對浮體啟閉閘門在流動水域中的運行進行了理論研究和模型試驗,得到浮體門受初始潮位影響較大、減小上下游水頭差可減小浮體門的受力從而提高穩定性的結論,為大型浮體門的結構設計和操作運行控制提供了技術支持。Rey等[14]采用試驗方法模擬了水流作用下的淹沒平板的水力荷載,得到水流對反射系數及作用在平板上的水平力影響巨大、對垂直作用力卻影響微小的結論。Venugopal等[15]得到不同浮體結構體型以及吃水深度對其表面受力影響巨大。崔貞等[16-18]采用物理模型試驗以及數值模擬對不同浮體結構在不同水力特性下的水流結構以及傾覆性進行研究,研究不同參數對浮體結構的影響,為有限流動水域中浮體結構的穩定性提供參考依據。以上研究大多對浮體結構的穩定性及所受作用力進行研究,對水流結構及其影響因素研究較少。本文通過物理模型試驗,對不同來流條件下及不同位置下的浮體結構在有限動水作用下的下游水流結構進行分析。通過對比不同來流以及位置下的水力特性,分別對特征斷面的流速分布特征、斷面流速的不均勻系數以及回流區的變化特性進行比較分析,以期為有限水域浮體結構在動水運行過程中的周圍水流變化特性以及其穩定性分析提供依據。
            1試驗裝置及參數設計
            1.1試驗裝置
            為探究浮體結構在不同位置以及不同來流流量對下游水流結構的影響,在長、寬、高分別為10.00m、0.30m和0.50m的有機玻璃水槽中進行物理模型試驗(圖1)。浮體結構位于水槽中間區域,通過閘門調速裝置對浮體結構的位置進行精確控制,對下游區域流速采用ADV進行測速,并采用電磁流量計進行流量監測。
            試驗整體模型
            1.2試驗參數設計
            有限水域的浮體結構在不同來流動水中運行時,浮體結構位置的改變會對流場產生影響,從而影響浮體結構的泄流能力以及穩定性。試驗過程中固定浮體結構的體型不變(長L=0.20m,寬B=0.30m,高a=0.10m),分別選取4種不同來流流量Q及浮體結構位置e,控制浮體結構在上、下游水位不變的條件下進行試驗,具體試驗參數設計及說明見表1以及圖2。
            試驗參數設計試驗參數示意圖
            2結果及分析
            來自上游的水體經浮體結構的阻擋作用,水流繞流經浮體結構的上部和下部區域通過,并在浮體結構背水面的下游區域形成小范圍回流區,此處水流紊亂,流速分布不均勻。試驗過程中,對回流區沿水流方向的長度D(水槽縱向中心斷面處,自浮體結構背水面到沿水流方向流速為0的**遠位置點)進行量測。選取浮體結構下游區域回流區中心點所在斷面進行流速測量對比。流速測量斷面位置A—A見圖3。
            流速測量斷面
            2.1不同浮體位置對斷面流速分布的影響
            圖4橫坐標為斷面水流方向流速,縱坐標為測點垂向位置與下游水位的比值y/H'。隨著浮體結構位置的上升,**小斷面流速位置同樣上升。以圖3(a)為例,當e=0.02m時,下游斷面位置自下而上呈現先減小、后增大的趨勢,在y/H'=0.40時流速達到**小,隨著浮體結構位置的上升,**小流速呈現向上偏移的趨勢。在斷面位置y/H'=0.20時,隨著e的增大,流速呈現增大的趨勢。當e較小時,流經浮體結構下部進行下泄的水流較少,主流出現在浮體結構的上部,且在浮體結構的阻擋作用下出現回流區;隨著e上升,主流偏向浮體結構下部區域,流速增大。與y/H'=0.20的流速分布正好相反,當y/H'=0.80時,流速分布隨著浮體位置的增大而減小。隨著e的增大,通過浮體結構下部泄流的水體增多,主流開始向下偏移。試驗過程中,浮體結構處于淹沒狀態,流速的分布隨著浮體位置的改變呈現上大、中小、下大的分布趨勢,在浮體結構下游區域形成回流區,回流區的位置隨著浮體結構的上升而上升。
            不同浮體結構位置斷面流速分布
            2.2不同來流流量對斷面流速分布的影響
            由圖5可知,當e相同時,斷面**小流速發生的位置相同,發生在浮體結構下游回流區位置。隨著來流流量的增大,流經浮體結構下泄的水流流速在上層和下層水體中呈現增大的趨勢。浮體結構位置不變,由于受到浮體結構的擠壓,上游來流分別經過浮體結構上部、下部進行泄流,因此在下游區域的上層、下層水體中,流速較大;受浮體結構的阻擋,浮體結構下游區域形成回流區,流速較小。試驗過程中,由于控制浮體結構所在水域的上游、下游水位不發生變化,因此隨著來流流量的增大,流速呈現增大的趨勢。
            不同來流浮體結構斷面流速分布
            2.3特征流速以及不均勻系數
            流速沿斷面分布的均勻特性可以通過流速分布不均勻系數δ[17]進行表征,通過所選取斷面**大流速和**小流速的差值與該斷面平均流速的比值,δ值越大表明浮體結構的存在對水流斷面流速的分布產生的影響較大。表2中,當來流流量相同時,流速的不均勻系數多數隨e的增大而減小。浮體結構位置較小時,主流為浮體結構上部的水流。隨著浮體結構位置的上升,來自上游的水體逐漸分成浮體結構上部和下部的兩股主流,流速分布的不均性減小。浮體結構位置及所處水位條件相同時,來流流量的增大,區域的平均流速增大,因此流速不均勻性減小。
            特征流速及不均勻系數
            2.4回流區長度分析
            表3中,當來流流量較小時(Q=0.015m3/s),回流區的長度D隨著浮體結構位置的增大逐漸增大;當來流流量較大時(Q=0.024m3/s),回流區的長度卻隨著浮體結構位置的增大呈現減小的趨勢。試驗過程中,當浮體結構位置較高且來流較小時,浮體結構上下部區域的主流流速較小,回流區范圍較大;浮體結構位置不變時,來流流量增大,回流區長度減小。來流增加,下泄水流流速較大,并迅速將回流區內的水流帶入下游區域,因此回流區長度反而呈現減小趨勢。
            回流區長度
            3結論
            a.浮體結構下游回流區水流流速分布呈現上大、中小、下大的分布規律,受浮體結構位置的影響較明顯;**小流速出現在浮體結構背水面的下游區域,且主流隨著浮體位置的變化而發生偏移。
            b.來流流量的增大會引起整體流速增大,而**小流速發生位置幾乎不受影響。
            c.隨著浮體結構位置的增大,流速的不均勻系數多數呈減小趨勢。
            d.不同位置的浮體結構對回流區的范圍存在影響,且隨著流量的變化而發生變化:流量較小時(Q=0.015m3/s),隨著位置的增大回流區長度增大;流量較大時(Q=0.024m3/s),回流區長度呈現減小趨勢。在實際工程中,應注意由于浮體結構位置引起的水流結構改變,并通過合理調控來流流量確保浮體的安全。

             

            东京28