1. <nav id="iwowq"></nav>
      <li id="iwowq"><object id="iwowq"><cite id="iwowq"></cite></object></li>
          <em id="iwowq"></em>
        1. <th id="iwowq"></th>
          <nav id="iwowq"></nav>

            您好,三暢電磁流量計官方網站歡迎您!

            單位換算|官方微信|加入收藏|聯系三暢

            電磁流量計

            新聞資訊

            聯系我們

            熱門文章

            影響電磁流量計誤差提高精度的五個方面問題

            來源:作者:發表時間:2017-10-09 08:36:09

                     摘 要: 電磁流量計由于具有安裝和使用較方便、結構和操作簡單、測量精度高,測量結果不受外在物理參數影響以及報警功能和故障自診斷等特點,因此,現已廣泛地應用于工業行業,流量數據在工業生產中是重要的工藝參數,流量測量儀表被廣泛應用。隨著科學技術的不斷發展,不斷有新型流量儀表出現,本文詳細介紹了電磁流量計在應用中如何減小誤差的方法 。

             
            一、流體電導率的問題
                    流體電導率的降低,將增加電極的輸出阻抗,并且由轉換器輸入阻抗引起的負載效而產生誤差,因此,按如下所述原則,規定了電磁流量計應用中流體的電導率的下限。電極的輸出阻抗決定了轉換器所需的輸入阻抗的大小,而電極輸出阻抗,可認為流體的電導率和電極大小所支配。在理論分析時將電極作為點電極,大小可以忽略。實際上,電極有一定大小,當直徑為 d 的圓板電極與電導率為 k 的半無限展寬大的流體接觸時,其展寬電阻為 1/2kd。因此,如果管道直徑D>>d,則電極的輸出阻抗為兩個展寬電阻之和,即等于 1/Kd 。一般測量流體的電導率的下限為 5μS/cm~10μS/cm,所以,若電極直徑為 1cm,則電極的輸出阻抗就為 1/Kd=100kΩ~200kΩ,為使輸出阻抗的影響限制在 0.1%以下,轉換器的輸入阻抗應為 200 MΩ左右。
             
            二、電極襯里附著物的影響
                    在測量有附著沉淀物的流體時,電極表面將受污染,常常引起零點變動,故必須注意,零點變化和電極污染程度兩者的關系,要進行定量分析比較困難,但可以說,電極直徑越小,所受的影響越小。在使用中,應注意電極的清污,以防止附著。在襯里上附著沉淀物時產生的誤差
             
                    Δε,如果附著的厚度是一樣,則可由式:
                    Δε=1-2/[1+(Kω/Kf)+(1-Kω/Kf) ×(1-2t/D)2]計算,其中 Kω、Kf 分別為附著物和測量流體的電導率,附著物厚度為 t,直徑為 D。
             
                    若式中 Kω和 Kf 相等,則無誤差,附著物的電導率較低時,上式也成立,但因為會增加電極的輸出阻抗,因此受到限制,如絕緣性沉淀物浸在流體中就是這種情況。相反,如附著金屬粉末等,因高電導率的附著層,使感應電勢短路,使電極輸出偏低,造成負偏差。在測量具有沉淀附著物的流體時,除了選擇如玻璃或聚四氯乙烯等難以附著沉淀的襯里外,還應增其流速。如果在流體中均勻地含有氣泡,則測量的是氣泡的體積流量,并且使所測量值不穩定,而引起誤差。綜上所述,在選用流量計特別是大口徑電磁流量計時,應考慮今后對傳感
            器的電極及襯里的維護問題。如選用上海光華<。.>愛而美特儀器有限公司的刮刀電極或可更換式電極,或者在傳感器的上游或下游的適當位置預置一個清洗用入孔,以便日后清洗傳感器。
             
            三、信號傳輸電纜長度的問題
                    傳感器(即電極)與傳感器之間的連接電纜愈短愈好。但有些現場受安裝環境位置的限制,轉換器與傳感器的距離較遠,這時要考慮連接電纜的**大長度問題。傳感器與轉換器之間的連接電纜的**大長度又由電纜的分布電容和被測流體的電導率決定。
             
                    實際使用中,當被測流體的電導率是在一定的范圍之間,因此就決定了電極與轉換器之間電纜的**大長度。當電纜長度超過**大長度時,由電纜分布電容引起的負載效應就成了問題。為防止這種情況發生,使用雙芯兩層屏蔽電纜,由轉換器提供低阻抗電壓源使內側屏蔽與芯線得到相同的電壓,以形成屏蔽,即使芯線與屏蔽之間有分布電容存在,但芯線與屏蔽是同電位,則兩者之間就無電流通過,也無電纜的負載效應存在,因此可延長信號電纜**大長度。另外,還可用特殊信號傳輸電纜延長轉換器與傳感器之間的**大長度。
             
            四、勵磁的技術問題
                    勵磁技術是勵磁流量計測量性能的關鍵技術之一,勵磁方式實際應用上可分成交流正弦波勵磁,非正弦波交流勵磁和直流勵磁方式。交流正弦波勵磁,當交流電源電壓(有時是頻率)不穩時,磁場強度將有所改變,所以電極間產生的感應電動勢也變動,因而,必須從傳感器取出對應于計算磁場強度的信號,作為標準信號。這種勵磁方式易引起零點變動,而降低其測量精度。非正弦波交流勵磁,是采用低于工業頻率的方式或三角波勵磁的方式,可以認為產生恒定直流,周期性地改變極性的方式,因這種勵磁電源穩定,故不必除去磁場強度的變動而進行運算。
             
                    交流勵磁的方式的主要問題是感應噪聲嚴重。
             
                    直流勵磁方式,則是在電極上的極化電位成了重要障礙。故一定值的直流勵磁方式僅適用于非電解質(如液體金屬)液體的測量。在測量自來水、源水的等水溶液時,一般采用周期性間歇的直流勵磁方式。間歇周期應選為交流電源周期的整數倍,可消除交流電源頻率的噪聲,排除了交流磁場的電渦流和直流磁場的極化干擾,勵磁頻率降低,零點穩定性可以提高,但儀表抗低頻干擾能力減弱,響應速度慢,如果勵磁頻率高,則抗低頻干擾的能力增強,但儀表的零點穩定性降低。這一問題到二十世紀七十年代研究出了低頻矩形波(50Hz 的1/2~1/32),解決了長期困擾電磁流量計的工頻干擾,提高了零點穩定性和測量精確度。二十世紀八十年代又出現了三值低頻矩形波勵磁技術(有 50Hz 的 1/8 為周期,采用正弦規律變化的勵磁電流),具有更好的零點穩定性,解決了干擾電勢的影響,但降低了響應速度,并且在測量泥漿、紙漿等含固體顆粒和纖維流體及低導電率流體測量時,會產生噪聲(因流體摩擦電極,使電極表面氧化剝離后又形成所致),使輸出信號擺動不穩;二十世紀八十年代末又針對這些問題推出了雙頻矩形勵磁方式,其勵磁波形由低頻(6.5Hz)矩形波和高頻(75Hz)矩形波疊加構成,分別采樣與之相對應的流量信號,得到低頻和高頻特征的兩種信號經過處理后可再現實際流量的信號值。因此這種技術既具有低頻矩形波勵磁技術優良的零點穩定性,又具有高頻矩形波勵磁技術對流體噪聲較強的抑制能力。
             
            五、傳感器接地的問題
                    電磁流量計傳感器電極檢測的流量信號是毫伏級,且以傳感器內流體的電位為基準的,所以外來干擾對它的影響極大,因而,良好的接地很大程度上決定著流量計的測量準確度。被測的流體本身作為電導體,必須排除其他不相關的電磁干擾。電極檢測出的電勢信號,不受外界寄生電勢的干擾。對傳感器應有良好的單獨接地線,接地電阻小于 10Ω。在連接傳感器的管道內若涂有絕緣層或是非金屬管道時,傳感器兩側應裝有接地環。
             
            六、結束語
                    綜上所述,隨著電子及計算機技術發展應用,使電磁流量計性能更好,能進行各種誤差補償,提高了測量準確度;具有轉換線路異常、檢測部分異常、誤設定、空管、過限報警等自診斷功能;可通過手操器或計算機等實現遠程通信,以調整電磁流量計的零點、量程變更、阻尼變更等。近年來,生產廠家推出了多種形式的電磁流量計以適應不同性質流體的測量。
            东京28